array_direct.hpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /*************************************************************************
  2. *
  3. * Copyright 2016 Realm Inc.
  4. *
  5. * Licensed under the Apache License, Version 2.0 (the "License");
  6. * you may not use this file except in compliance with the License.
  7. * You may obtain a copy of the License at
  8. *
  9. * http://www.apache.org/licenses/LICENSE-2.0
  10. *
  11. * Unless required by applicable law or agreed to in writing, software
  12. * distributed under the License is distributed on an "AS IS" BASIS,
  13. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. * See the License for the specific language governing permissions and
  15. * limitations under the License.
  16. *
  17. **************************************************************************/
  18. #ifndef REALM_ARRAY_DIRECT_HPP
  19. #define REALM_ARRAY_DIRECT_HPP
  20. #include <realm/utilities.hpp>
  21. #include <realm/alloc.hpp>
  22. // clang-format off
  23. /* wid == 16/32 likely when accessing offsets in B tree */
  24. #define REALM_TEMPEX(fun, wid, arg) \
  25. if (wid == 16) {fun<16> arg;} \
  26. else if (wid == 32) {fun<32> arg;} \
  27. else if (wid == 0) {fun<0> arg;} \
  28. else if (wid == 1) {fun<1> arg;} \
  29. else if (wid == 2) {fun<2> arg;} \
  30. else if (wid == 4) {fun<4> arg;} \
  31. else if (wid == 8) {fun<8> arg;} \
  32. else if (wid == 64) {fun<64> arg;} \
  33. else {REALM_ASSERT_DEBUG(false); fun<0> arg;}
  34. #define REALM_TEMPEX2(fun, targ, wid, arg) \
  35. if (wid == 16) {fun<targ, 16> arg;} \
  36. else if (wid == 32) {fun<targ, 32> arg;} \
  37. else if (wid == 0) {fun<targ, 0> arg;} \
  38. else if (wid == 1) {fun<targ, 1> arg;} \
  39. else if (wid == 2) {fun<targ, 2> arg;} \
  40. else if (wid == 4) {fun<targ, 4> arg;} \
  41. else if (wid == 8) {fun<targ, 8> arg;} \
  42. else if (wid == 64) {fun<targ, 64> arg;} \
  43. else {REALM_ASSERT_DEBUG(false); fun<targ, 0> arg;}
  44. #define REALM_TEMPEX3(fun, targ1, wid, targ3, arg) \
  45. if (wid == 16) {fun<targ1, 16, targ3> arg;} \
  46. else if (wid == 32) {fun<targ1, 32, targ3> arg;} \
  47. else if (wid == 0) {fun<targ1, 0, targ3> arg;} \
  48. else if (wid == 1) {fun<targ1, 1, targ3> arg;} \
  49. else if (wid == 2) {fun<targ1, 2, targ3> arg;} \
  50. else if (wid == 4) {fun<targ1, 4, targ3> arg;} \
  51. else if (wid == 8) {fun<targ1, 8, targ3> arg;} \
  52. else if (wid == 64) {fun<targ1, 64, targ3> arg;} \
  53. else {REALM_ASSERT_DEBUG(false); fun<targ1, 0, targ3> arg;}
  54. #define REALM_TEMPEX4(fun, targ1, targ3, targ4, wid, arg) \
  55. if (wid == 16) {fun<targ1, targ3, targ4, 16> arg;} \
  56. else if (wid == 32) {fun<targ1, targ3, targ4, 32> arg;} \
  57. else if (wid == 0) {fun<targ1, targ3, targ4, 0> arg;} \
  58. else if (wid == 1) {fun<targ1, targ3, targ4, 1> arg;} \
  59. else if (wid == 2) {fun<targ1, targ3, targ4, 2> arg;} \
  60. else if (wid == 4) {fun<targ1, targ3, targ4, 4> arg;} \
  61. else if (wid == 8) {fun<targ1, targ3, targ4, 8> arg;} \
  62. else if (wid == 64) {fun<targ1, targ3, targ4, 64> arg;} \
  63. else {REALM_ASSERT_DEBUG(false); fun<targ1, targ3, targ4, 0> arg;}
  64. // clang-format on
  65. namespace realm {
  66. /// Takes a 64-bit value and returns the minimum number of bits needed
  67. /// to fit the value. For alignment this is rounded up to nearest
  68. /// log2. Posssible results {0, 1, 2, 4, 8, 16, 32, 64}
  69. size_t bit_width(int64_t value);
  70. // Direct access methods
  71. template <size_t width>
  72. void set_direct(char* data, size_t ndx, int_fast64_t value) noexcept
  73. {
  74. if (width == 0) {
  75. REALM_ASSERT_DEBUG(value == 0);
  76. return;
  77. }
  78. else if (width == 1) {
  79. REALM_ASSERT_DEBUG(0 <= value && value <= 0x01);
  80. size_t byte_ndx = ndx / 8;
  81. size_t bit_ndx = ndx % 8;
  82. typedef unsigned char uchar;
  83. uchar* p = reinterpret_cast<uchar*>(data) + byte_ndx;
  84. *p = uchar((*p & ~(0x01 << bit_ndx)) | (int(value) & 0x01) << bit_ndx);
  85. }
  86. else if (width == 2) {
  87. REALM_ASSERT_DEBUG(0 <= value && value <= 0x03);
  88. size_t byte_ndx = ndx / 4;
  89. size_t bit_ndx = ndx % 4 * 2;
  90. typedef unsigned char uchar;
  91. uchar* p = reinterpret_cast<uchar*>(data) + byte_ndx;
  92. *p = uchar((*p & ~(0x03 << bit_ndx)) | (int(value) & 0x03) << bit_ndx);
  93. }
  94. else if (width == 4) {
  95. REALM_ASSERT_DEBUG(0 <= value && value <= 0x0F);
  96. size_t byte_ndx = ndx / 2;
  97. size_t bit_ndx = ndx % 2 * 4;
  98. typedef unsigned char uchar;
  99. uchar* p = reinterpret_cast<uchar*>(data) + byte_ndx;
  100. *p = uchar((*p & ~(0x0F << bit_ndx)) | (int(value) & 0x0F) << bit_ndx);
  101. }
  102. else if (width == 8) {
  103. REALM_ASSERT_DEBUG(std::numeric_limits<int8_t>::min() <= value &&
  104. value <= std::numeric_limits<int8_t>::max());
  105. *(reinterpret_cast<int8_t*>(data) + ndx) = int8_t(value);
  106. }
  107. else if (width == 16) {
  108. REALM_ASSERT_DEBUG(std::numeric_limits<int16_t>::min() <= value &&
  109. value <= std::numeric_limits<int16_t>::max());
  110. *(reinterpret_cast<int16_t*>(data) + ndx) = int16_t(value);
  111. }
  112. else if (width == 32) {
  113. REALM_ASSERT_DEBUG(std::numeric_limits<int32_t>::min() <= value &&
  114. value <= std::numeric_limits<int32_t>::max());
  115. *(reinterpret_cast<int32_t*>(data) + ndx) = int32_t(value);
  116. }
  117. else if (width == 64) {
  118. REALM_ASSERT_DEBUG(std::numeric_limits<int64_t>::min() <= value &&
  119. value <= std::numeric_limits<int64_t>::max());
  120. *(reinterpret_cast<int64_t*>(data) + ndx) = int64_t(value);
  121. }
  122. else {
  123. REALM_ASSERT_DEBUG(false);
  124. }
  125. }
  126. inline void set_direct(char* data, size_t width, size_t ndx, int_fast64_t value) noexcept
  127. {
  128. REALM_TEMPEX(set_direct, width, (data, ndx, value));
  129. }
  130. template <size_t width>
  131. void fill_direct(char* data, size_t begin, size_t end, int_fast64_t value) noexcept
  132. {
  133. for (size_t i = begin; i != end; ++i)
  134. set_direct<width>(data, i, value);
  135. }
  136. template <int w>
  137. int64_t get_direct(const char* data, size_t ndx) noexcept
  138. {
  139. if (w == 0) {
  140. return 0;
  141. }
  142. if (w == 1) {
  143. size_t offset = ndx >> 3;
  144. return (data[offset] >> (ndx & 7)) & 0x01;
  145. }
  146. if (w == 2) {
  147. size_t offset = ndx >> 2;
  148. return (data[offset] >> ((ndx & 3) << 1)) & 0x03;
  149. }
  150. if (w == 4) {
  151. size_t offset = ndx >> 1;
  152. return (data[offset] >> ((ndx & 1) << 2)) & 0x0F;
  153. }
  154. if (w == 8) {
  155. return *reinterpret_cast<const signed char*>(data + ndx);
  156. }
  157. if (w == 16) {
  158. size_t offset = ndx * 2;
  159. return *reinterpret_cast<const int16_t*>(data + offset);
  160. }
  161. if (w == 32) {
  162. size_t offset = ndx * 4;
  163. return *reinterpret_cast<const int32_t*>(data + offset);
  164. }
  165. if (w == 64) {
  166. size_t offset = ndx * 8;
  167. return *reinterpret_cast<const int64_t*>(data + offset);
  168. }
  169. REALM_ASSERT_DEBUG(false);
  170. return int64_t(-1);
  171. }
  172. inline int64_t get_direct(const char* data, size_t width, size_t ndx) noexcept
  173. {
  174. REALM_TEMPEX(return get_direct, width, (data, ndx));
  175. }
  176. template <int width>
  177. inline std::pair<int64_t, int64_t> get_two(const char* data, size_t ndx) noexcept
  178. {
  179. return std::make_pair(to_size_t(get_direct<width>(data, ndx + 0)), to_size_t(get_direct<width>(data, ndx + 1)));
  180. }
  181. inline std::pair<int64_t, int64_t> get_two(const char* data, size_t width, size_t ndx) noexcept
  182. {
  183. REALM_TEMPEX(return get_two, width, (data, ndx));
  184. }
  185. template <int width>
  186. inline void get_three(const char* data, size_t ndx, ref_type& v0, ref_type& v1, ref_type& v2) noexcept
  187. {
  188. v0 = to_ref(get_direct<width>(data, ndx + 0));
  189. v1 = to_ref(get_direct<width>(data, ndx + 1));
  190. v2 = to_ref(get_direct<width>(data, ndx + 2));
  191. }
  192. inline void get_three(const char* data, size_t width, size_t ndx, ref_type& v0, ref_type& v1, ref_type& v2) noexcept
  193. {
  194. REALM_TEMPEX(get_three, width, (data, ndx, v0, v1, v2));
  195. }
  196. // Lower/upper bound in sorted sequence
  197. // ------------------------------------
  198. //
  199. // 3 3 3 4 4 4 5 6 7 9 9 9
  200. // ^ ^ ^ ^ ^
  201. // | | | | |
  202. // | | | | -- Lower and upper bound of 15
  203. // | | | |
  204. // | | | -- Lower and upper bound of 8
  205. // | | |
  206. // | | -- Upper bound of 4
  207. // | |
  208. // | -- Lower bound of 4
  209. // |
  210. // -- Lower and upper bound of 1
  211. //
  212. // These functions are semantically identical to std::lower_bound() and
  213. // std::upper_bound().
  214. //
  215. // We currently use binary search. See for example
  216. // http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary.
  217. template <int width>
  218. inline size_t lower_bound(const char* data, size_t size, int64_t value) noexcept
  219. {
  220. // The binary search used here is carefully optimized. Key trick is to use a single
  221. // loop controlling variable (size) instead of high/low pair, and to keep updates
  222. // to size done inside the loop independent of comparisons. Further key to speed
  223. // is to avoid branching inside the loop, using conditional moves instead. This
  224. // provides robust performance for random searches, though predictable searches
  225. // might be slightly faster if we used branches instead. The loop unrolling yields
  226. // a final 5-20% speedup depending on circumstances.
  227. size_t low = 0;
  228. while (size >= 8) {
  229. // The following code (at X, Y and Z) is 3 times manually unrolled instances of (A) below.
  230. // These code blocks must be kept in sync. Meassurements indicate 3 times unrolling to give
  231. // the best performance. See (A) for comments on the loop body.
  232. // (X)
  233. size_t half = size / 2;
  234. size_t other_half = size - half;
  235. size_t probe = low + half;
  236. size_t other_low = low + other_half;
  237. int64_t v = get_direct<width>(data, probe);
  238. size = half;
  239. low = (v < value) ? other_low : low;
  240. // (Y)
  241. half = size / 2;
  242. other_half = size - half;
  243. probe = low + half;
  244. other_low = low + other_half;
  245. v = get_direct<width>(data, probe);
  246. size = half;
  247. low = (v < value) ? other_low : low;
  248. // (Z)
  249. half = size / 2;
  250. other_half = size - half;
  251. probe = low + half;
  252. other_low = low + other_half;
  253. v = get_direct<width>(data, probe);
  254. size = half;
  255. low = (v < value) ? other_low : low;
  256. }
  257. while (size > 0) {
  258. // (A)
  259. // To understand the idea in this code, please note that
  260. // for performance, computation of size for the next iteration
  261. // MUST be INDEPENDENT of the conditional. This allows the
  262. // processor to unroll the loop as fast as possible, and it
  263. // minimizes the length of dependence chains leading up to branches.
  264. // Making the unfolding of the loop independent of the data being
  265. // searched, also minimizes the delays incurred by branch
  266. // mispredictions, because they can be determined earlier
  267. // and the speculation corrected earlier.
  268. // Counterintuitive:
  269. // To make size independent of data, we cannot always split the
  270. // range at the theoretical optimal point. When we determine that
  271. // the key is larger than the probe at some index K, and prepare
  272. // to search the upper part of the range, you would normally start
  273. // the search at the next index, K+1, to get the shortest range.
  274. // We can only do this when splitting a range with odd number of entries.
  275. // If there is an even number of entries we search from K instead of K+1.
  276. // This potentially leads to redundant comparisons, but in practice we
  277. // gain more performance by making the changes to size predictable.
  278. // if size is even, half and other_half are the same.
  279. // if size is odd, half is one less than other_half.
  280. size_t half = size / 2;
  281. size_t other_half = size - half;
  282. size_t probe = low + half;
  283. size_t other_low = low + other_half;
  284. int64_t v = get_direct<width>(data, probe);
  285. size = half;
  286. // for max performance, the line below should compile into a conditional
  287. // move instruction. Not all compilers do this. To maximize chance
  288. // of succes, no computation should be done in the branches of the
  289. // conditional.
  290. low = (v < value) ? other_low : low;
  291. };
  292. return low;
  293. }
  294. // See lower_bound()
  295. template <int width>
  296. inline size_t upper_bound(const char* data, size_t size, int64_t value) noexcept
  297. {
  298. size_t low = 0;
  299. while (size >= 8) {
  300. size_t half = size / 2;
  301. size_t other_half = size - half;
  302. size_t probe = low + half;
  303. size_t other_low = low + other_half;
  304. int64_t v = get_direct<width>(data, probe);
  305. size = half;
  306. low = (value >= v) ? other_low : low;
  307. half = size / 2;
  308. other_half = size - half;
  309. probe = low + half;
  310. other_low = low + other_half;
  311. v = get_direct<width>(data, probe);
  312. size = half;
  313. low = (value >= v) ? other_low : low;
  314. half = size / 2;
  315. other_half = size - half;
  316. probe = low + half;
  317. other_low = low + other_half;
  318. v = get_direct<width>(data, probe);
  319. size = half;
  320. low = (value >= v) ? other_low : low;
  321. }
  322. while (size > 0) {
  323. size_t half = size / 2;
  324. size_t other_half = size - half;
  325. size_t probe = low + half;
  326. size_t other_low = low + other_half;
  327. int64_t v = get_direct<width>(data, probe);
  328. size = half;
  329. low = (value >= v) ? other_low : low;
  330. };
  331. return low;
  332. }
  333. }
  334. #endif /* ARRAY_TPL_HPP_ */